HYPERBOLIC COXETER n-POLYTOPES WITH n+ 3 FACETS

نویسنده

  • P. V. TUMARKIN
چکیده

Noncompact hyperbolic Coxeter n-polytopes of finite volume and having n+ 3 facets are studied in this paper. Unlike the spherical and parabolic cases, no complete classification exists as yet for hyperbolic Coxeter polytopes of finite volume. It has been shown that the dimension of a bounded Coxeter polytope is at most 29 (Vinberg, 1984), while an upper estimate in the unbounded case is 995 (Prokhorov, 1986). There is a complete classification of simplexes and of Coxeter n-polytopes of finite volume with n + 2 facets via the complexity of the combinatorial type. In 1994, Esselman proved that compact hyperbolic Coxeter n-polytopes with n+3 facets can only exist when n ≤ 8. In dimension 8 there is just one such polytope; it was found by Bugaenko in 1992. Here we obtain an analogous result for noncompact polytopes of finite volume. There are none when n > 16. We prove that there is just one when n = 16, and obtain its Coxeter diagram.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coxeter n - polytopes with n + 3 facets

We use methods of combinatorics of polytopes together with geometrical and computational ones to obtain the complete list of compact hyperbolic Coxeter n-polytopes with n + 3 facets, 4 ≤ n ≤ 7. Combined with results of Esselmann [E1] this gives the classification of all compact hyperbolic Coxeter n-polytopes with n + 3 facets, n ≥ 4. Polytopes in dimensions 2 and 3 were classified by Poincaré [...

متن کامل

M ay 2 00 7 Compact hyperbolic Coxeter n - polytopes with n + 3 facets

We use methods of combinatorics of polytopes together with geometrical and computational ones to obtain the complete list of compact hyperbolic Coxeter n-polytopes with n + 3 facets, 4 ≤ n ≤ 7. Combined with results of Esselmann [E1] this gives the classification of all compact hyperbolic Coxeter n-polytopes with n + 3 facets, n ≥ 4. Polytopes in dimensions 2 and 3 were classified by Poincaré [...

متن کامل

Compact Hyperbolic Coxeter n-Polytopes with n+3 Facets

We use methods of combinatorics of polytopes together with geometrical and computational ones to obtain the complete list of compact hyperbolic Coxeter npolytopes with n + 3 facets, 4 ≤ n ≤ 7. Combined with results of Esselmann this gives the classification of all compact hyperbolic Coxeter n-polytopes with n + 3 facets, n ≥ 4. Polytopes in dimensions 2 and 3 were classified by Poincaré and And...

متن کامل

Hyperbolic Coxeter N-polytopes with N + 2 Facets

In this paper, we classify all the hyperbolic non-compact Coxeter polytopes of finite volume combinatorial type of which is either a pyramid over a product of two simplices or a product of two simplices of dimension greater than one. Combined with results of Kaplinskaja [5] and Esselmann [3] this completes the classification of hyperbolic Coxeter n-polytopes of finite volume with n + 2 facets.

متن کامل

Ju n 20 07 Coxeter polytopes with a unique pair of non - intersecting facets

We consider compact hyperbolic Coxeter polytopes whose Coxeter diagram contains a unique dotted edge. We prove that such a polytope in d-dimensional hyperbolic space has at most d + 3 facets. In view of [L], [K], [E2], and [T], this implies that compact hyperbolic Coxeter polytopes with a unique pair of non-intersecting facets are completely classified. They do exist only up to dimension 6 and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004